NCERT Solutions for Class 9 Maths Chapter 4 Linear Equations in Two Variables (दो चरों में रैखिक समीकरण) (Hindi Medium)
These Solutions are part of NCERT Solutions for Class 9 Maths in Hindi Medium. Here we have given NCERT Solutions for Class 9 Maths Chapter 4 Linear Equations in Two Variables.
प्रनावाली 4.1
Ex 4.1 Class 9 गणित Q1. एक नोटबुक की कीमत एक कलम की कीमत से दो गुनी है। इस कथन को निरूपित करने के लिए दो चरों वाला एक रैखिक समीकरण लिखिए। (संकेत मान लीजिए, नोटबुक की कीमत x रु है और कलम की कीमत y रु है)।
हल :
माना पेन की कीमत = y रुपया है
और नोटबुक की कीमत = x रुपया है
प्रश्नानुसार,
नोटबुक की कीमत = 2 ( पेन की कीमत )
x = 2y
⇒ x – 2y = 0
Ex 4.1 Class 9 गणित Q2. निम्नलिखित रैखिक समीकरणों को ax + by + c = 0 के रूप में व्यक्त कीजिए और प्रत्येक स्थिति में a, b और c के मान बताइए :
(i) 2x + 3y = 9.35
(ii) x – 5y – 10 = 0
(iii) –2x + 3y = 6
(iv) x = 3y
(v) 2x = –5y
(vi) 3x + 2 = 0
(vii) y– 2 = 0
(viii) 5 = 2x
हल:
(i) 2x + 3y = 9.35
दिए गए समीकरण को ax + by + c = 0 के रूप में व्यक्त करने पर
⇒ 2x + 3y – 9.35 = 0
अत: a = 2, b = 3, c = – 9.35
हल: (ii) x –5y – 10 = 0
दिए गए समीकरण को ax + by + c = 0 के रूप में व्यक्त करने पर
⇒ x –5y – 10 = 0
अत: , a = 1, b = -5, c = -10
हल: (iii) –2x + 3y = 6
दिए गए समीकरण को ax + by + c = 0 के रूप में व्यक्त करने पर
⇒ –2x + 3y – 6 = 0
अत:, a = – 2, b = 3, c = – 6
हल: (iv) x = 3y
दिए गए समीकरण को ax + by + c = 0 के रूप में व्यक्त करने पर
⇒ x – 3y = 0
अत:, a = 1, b = –3, c= 0
हल: (v) 2x = –5y
दिए गए समीकरण को ax + by + c = 0 के रूप में व्यक्त करने पर
⇒ 2x + 5y = 0
अत:, a = 2, b = 5, c = 0
हल: (vi) 3x + 2 = 0
दिए गए समीकरण को ax + by + c = 0 के रूप में व्यक्त करने पर
⇒ 3x + 0.y + 2 = 0
अत:, a = 3, b = 0, c = 2
हल: (vii) y – 2 = 0
दिए गए समीकरण को ax + by + c = 0 के रूप में व्यक्त करने पर
⇒ 0.x + y – 2 = 0
अत:, a = 0, b = 1, c = -2
हल: (Viii) 5 = 2x
दिए गए समीकरण को ax + by + c = 0 के रूप में व्यक्त करने पर
⇒2x – 5= 0
अत:, a = 2, b = 0, c = -5
प्रश्नावली 4.2
Ex 4.2 Class 9 गणित Q1. निम्नलिखित विकल्पों में से कौन-सा विकल्प सत्य है, और क्यों?
y = 3x + 5 का
(i) एक अद्वितीय हल है,
(ii) केवल दो हल है,
(iii) अपरिमित रूप से अनेक हल हैं |
हल : (iii) अपरिमित रूप से अनेक हल हैं |
Ex 4.2 Class 9 गणित Q2. निम्नलिखित समीकरणों में से प्रत्येक समीकरण के चार हल लिखिए :
(i) 2x + y = 7
(ii) πx + y = 9
(iii) x = 4y
अत: x और y का दिए गए समीकरण के लिए चार हल निम्नलिखित है :
अत: x और y का दिए गए समीकरण के लिए चार हल निम्नलिखित है :
अत: x और y का दिए गए समीकरण के लिए चार हल निम्नलिखित है :
Ex 4.2 Class 9 गणित Q3. बताइए कि निम्नलिखित हलों में कौन-कौन समीकरण x – 2y = 4 के हल है और कौन-कौन नहीं है :
(i) (0, 2)
(ii) (2, 0)
(iii) (4, 0)
(i) (0,2) समीकरण x – 2y = 4 का हल है अथवा नहीं
हल : x = 0 और y = 2 रखने पर
x – 2y = 4
LHS = 0 – 2(2)
= – 4
RHS = 4
इसलिए, LHS ≠ RHS
अत: (0, 2) दिए गए समीकरण का हल नहीं है |
(ii) (2,0) समीकरण x – 2y = 4 का हल है अथवा नहीं
हल : x – 2y = 4 में x = 2 और y = 0 रखने पर
LHS = 2 – 2(0)
= 2 – 0
= 2
जबकि RHS = 4 है
इसलिए, LHS ≠ RHS
अत: (2, 0) दिए गए समीकरण का हल नहीं है |
(iii) (4,0) समीकरण x – 2y = 4 का हल है अथवा नहीं
हल : समीकरण x – 2y = 4 में x = 4 और y = 0 रखने पर
LHS = x – 2y
= 4 – 2(0)
= 4 – 0 = 4
जबकि RHS = 4
यहाँ LHS = RHS है
अत: (4, 0) दिए गए समीकरण का हल है |
(v) बताइए (1,1) समीकरण x – 2y = 4 का हल है अथवा नहीं
हल : समीकरण x – 2y = 4 में x = 1 और y = 1 रखने पर
LHS = x – 2y = 1- 2 (1) = 1 – 2 = – 1
जबकि RHS = 4 है
अत: (1, 1) समीकरण x – 2y = 4 का हल नहीं है |
Ex 4.2 Class 9 गणित Q4. k का मान ज्ञात कीजिए जबकि x = 2, y = 1 समीकरण 2x + 3y = k का एक हल हो |
हल : 2x + 3y = k
x = 2 और y = 1 रखने पर
⇒ 2x + 3y = k
⇒ 2(2) + 3(1) = k
⇒ 4 + 3 = k
⇒ k = 7
प्रश्नावली 4.3
Ex 4.3 Class 9 गणित Q1. दो चरों वाले निम्नलिखित रैखिक समीकरणों में से प्रत्येक का आलेख खींचिए :
(i) x + y = 4
(ii) x – y = 2
(iii) y = 3x
(iv) 3 = 2x + y
हल : (i) x + y = 4
⇒ y = 4 – x
x का मान क्रमश: 0, 1, तथा 2 रखने पर y का मान क्रमश: 4, 3 और 2 प्राप्त होता है जिसकी सारणी निम्न है |
हल : (ii) x – y = 2
⇒ x = 2 + y
समीकरण में y का मान 1, 2 और 3 रखने पर y का मान क्रमश: 3, 4 और 5 प्राप्त होता है जिसकी सारणी निम्न है –
हल : (iii) y = 3x
समीकरण में x का मान 0, 1 और – 1 रखने पर क्रमश y का मान 0, 3 और -3 प्राप्त होता है –
हल : (iv) 3 = 2x + y
⇒ y = 3 – 2x
समीकरण में x का मान 0, 1 और -1 रखने पर y का मान क्रमश: 3, 1 और 5 प्राप्त होता है जिसकी सारणी निम्न है –
Ex 4.3 Class 9 गणित Q2. बिंदु (2, 14) से होकर जाने वाली दो रेखाओं के समीकरण लिखिए | इस प्रकार की और कितनी रेखाएँ हो सकती है , और क्यों ?
हल : बिंदु (2, 14) में x = 2 और y = 14 है
अत: इस मान को संतुष्ट करने वाले दो समीकरण निम्न है :
x + y = 16
और x – y = -12
इस प्रकार की अनंत रेखाए हो सकती है क्योंकि ये रेखाएँ एक ही बिंदु (2, 14) से गुजरेंगी |
Ex 4.3 Class 9 गणित Q3. यदि बिंदु (3, 4) समीकरण 3y = ax + 7 के आलेख पर स्थित है, तो a का मान ज्ञात कीजिए |
हल : 3y = ax + 7
बिंदु (3, 4) में x = 3 और y = 4 है |
समीकरण 3y = ax + 7 में x और y का मान रखने पर
3(4) = a(3) +7
12 = 3a + 7
3a = 12 – 7
3a = 5
Ex 4.3 Class 9 गणित Q4. एक नगर में टैक्सी का किराया निम्नलिखित है: पहले किलोमीटर का किराया 8 रु है और उसके बाद की दूरी के लिए प्रति किलोमीटर का किराया 5 रु है। यदि तय की गई दूरी x किलोमीटर हो, और कुल किराया y रु हो, तो इसका एक रैखिक समीकरण लिखिए औरउसका आलेख खींचिए।
हल : तय की गई दुरी = x km
कुल किराया = y रु
प्रश्नानुसार,
पहले किलोमीटर का किराया + 5(तय की गई दुरी – 1) = y
8 + 5(x – 1) = y
⇒ 8 + 5x – 5 = y
⇒ 3 + 5x = y
⇒ 5x –y + 3 = 0
⇒ y = 5x + 3
समीकरण में x का मान 0, -1 तथा 1 रखने पर y का मान क्रमश: 3, -2 और 8 प्राप्त होता है |
Ex 4.3 Class 9 गणित Q5. निम्नलिखित आलेखों में से प्रत्येक के लिए दिए गए विकल्पों से सही समीकरण का चयन कीजिए:
आकृति 4. 6 के लिए | आकृति 4.7 के लिए |
(i) y = x (ii) x + y = 0 (iii) y = 2x (iv) 2 + 3y = 7x |
(i) y = x + 2 (ii) y = x – 2 (iii) y = –x + 2 (iv) x + 2y = 6 |
हल : आकृति 4.6 के लिए
(ii) x + y = 0
आकृति 4.7 के लिए
(iii) y = -x + 2
Ex 4.3 Class 9 गणित Q6. एक अचर बल लगाने पर एक पिंड द्वारा किया गया कार्य पिंड द्वारा तय की गई दूरी के अनुक्रमानुपाती होता है। इस कथन को दो चरों वाले एक समीकरण के रूप में व्यक्त कीजिए और अचर बल 5 मात्रक लेकर इसका आलेख खींचिए। यदि पिंड द्वारा तय की गई दूरी
(i) 2 मात्रक
(ii) 0 मात्रक
हो, तो आलेख से किया हुआ कार्य ज्ञात कीजिए।
हल :
माना किया गया कार्य = y
पिंड द्वारा विस्थापन = x मीटर
अचर बल = 5 इकाई
किया गया कार्य = बल × विस्थापन
W = F × S
इसलिए, y = 5x
(i) जब तय दुरी 2 मात्रक है तब
x = 2 रखने पर
अत: y = 5x
⇒ y = 5(2)
⇒ y = 10
किया गया कार्य 10 मात्रक
(ii) जब तय की गई दुरी 0 मात्रक है तब
x = 0 रखने पर
⇒ y = 5(0)
⇒ y = 0
किया गया कार्य 0 मात्रक
आलेख के लिए x का मान -1, 0 और 1 रखने पर y का मान क्रमश: – 5, 0 और 5 प्राप्त होता है |
Ex 4.3 Class 9 गणित Q7. एक विद्यालय की कक्षा IX की छात्राएं यामिनी और फातिमा ने मिलकर भूकंप पीडि़त व्यक्तियों की सहायता के लिए प्रधानमंत्री राहत कोष में 100 रु अंशदान दिया। एक रैखिक समीकरण लिखिए जो इन आंकड़ों को संतुष्ट करती हो। (आप उनका अंशदान x रु और y रु मान सकते हैं)। इस समीकरण का आलेख खींचिए।
हल : माना यामिनी द्वारा योगदान = x रु
और फातिमा द्वारा योगदान = y रु
दोनों के द्वारा दिया गया अंशदान = 100 रु
अत: प्रश्नानुसार,
x + y = 10
y = 100 – x
समीकरण में x का मान 10, 20 और 30 रखने पर y का मान क्रमश: 90, 80 और 70 प्राप्त होता है |
Ex 4.3 Class 9 गणित Q8. अमरीका और कनाडा जैसे देशों में तापमान फारेनहाइट में मापा जाता है, जबकि भारत जैसे देशों में तापमान सेल्सियस में मापा जाता है। यहाँ फारेनहाइट को सेल्सियस में रूपांतरित करने वाला एक रैखिक समीकरण दिया गया है:
(i) सेल्सियस को x-अक्ष और फारेनहाइट को y-अक्ष मानकर ऊपर दिए गए रैखि समीकरण का आलेख खींचिए।
(ii) यदि तापमान 30°C है, तो फारेनहाइट में तापमान क्या होगा?
(iii) यदि तापमान 95°F है, तो सेल्सियस में तापमान क्या होगा?
(iv) यदि तापमान 0°C है, तो फारेनहाइट में तापमान क्या होगा? और यदि तापमान 0°F है, तो सेल्सियस में तापमान क्या होगा?
(v) क्या ऐसा भी कोई तापमान है जो फारेनहाइट और सेल्सियस दोनों के लिए संख्यात्मकत: समान है? यदि हाँ, तो उसे ज्ञात कीजिए।
हल :
इसीप्रकार x का मान 20 और 30 रखने पर y का मान 68 और 86 प्राप्त होगा जिसकी तालिका निम्न है |
>
हल : (v) माना t वह तापमान है जो सेल्सियस और फारेनहाईट दोनों में संख्यात्मक रूप से समान है |
प्रश्नावली 4.4
Ex 4.4 Class 9 गणित Q1.
(i) एक चर वाले
(ii) दो चर वाले
समीकरण के रूप में y = 3 का ज्यामितीय निरूपण कीजिए।
हल-
(i) एक चर वाले समीकरण के रूप में y = 3 का ज्यामितीय निरूपण :
संख्या रेखा खींचिए और उस पर 0 के दायीं ओर तीसरा चिह्न चिह्नित कीजिए।
अतः y = 3 की संख्या- रेखा पर यही ज्यामितीय स्थिति है।
(ii) दो चर वाले समीकरण के रूप में y = 3 को ज्यामितीय निरूपण :
(1) वर्ग पत्रक (ग्राफ पेपर) पर X-अक्ष तथा Y-अक्ष खींचकर उन पर मापन चिह्न अंकित कीजिए।
(2) Y-अक्ष पर +3 चिह्न से X-अक्ष के समान्तर रेखा AB खींचिए।
इस रेखा पर x ( भुज) के भिन्न-भिन्न मान वाले बिन्दुओं के लिए भी y (कोटि) का मान 3 स्थिर है।
ऋजु रेखा AB अभीष्ट आलेख है।
Ex 4.4 Class 9 गणित Q2.
(i) एक चर वाले
(ii) दो चर वाले
समीकरण के रूप में 2x + 9 = 0 का ज्यामितीय निरूपण कीजिए।
हल-
(i) एक चर वाले समीकरण के रूप में 2x + 9 = 0 का ज्यामितीय निरूपण :
दिया हुआ समीकरण 2x + 9 = 0
2x = -9
x = -4
संख्या-रेखा खींचिए। 0 के बायीं ओर -4 पर चिह्न लगाइए संख्या-रेखा पर 2x + 9 = 0 की यही स्थिति है।
(ii) दो चर वाले समीकरण के रूप में 2x + 9 = 0 का ज्यामितीय निरूपण :
(1) ग्राफ पेपर पर X-अक्ष तथा Y-अक्ष खींचकर उन पर मापक चिन्ह अंकित कीजिए।
(2) X-अक्ष पर या -4.5 चिह्नित (अंकित) कीजिए और इससे Y-अक्ष के समान्तर रेखा AB खींचिए।
इस रेखा पर स्थित सभी बिन्दुओं के लिए x = -4 होगा चाहे y का मान कुछ भी हो।
ऋजु रेखा AB अभीष्ट आलेख है।
Hope given NCERT Solutions for Class 9 Maths Chapter 4 are helpful to complete your homework. If you have any doubts, please comment below. NCERT-Solutions.com try to provide online tutoring for you.